Hingorani

Sunil Hingorani, an Indian American scientist from the Fred Hutchinson Cancer Research Center, is part of a team of researchers that has discovered the major reason cancer drugs fail. (Fredhutch.org photo)

NEW YORK — A team of researchers, including an Indian American scientist, has discovered that the major reason cancer drugs fail is that they cannot penetrate the high-pressure environment of solid tumors.

The findings revealed that hyaluronic acid — a large, naturally occurring molecule — is primarily responsible for generating elevated gel-fluid pressures in tumors. 

“We show that the gel-fluid phase generates a primary mechanism of drug resistance in pancreas cancer,” said lead researcher Sunil Hingorani from the Fred Hutchinson Cancer Research Center. 

A hyaluronidase treatment — family of enzymes that degrade hyaluronic acid — holds promise for improving patient outcomes for drug-resistant cancers.

In the study, published in the Biophysical Journal, the team conducted a hyaluronidase treatment in a mouse model of pancreatic cancer and found that it broke down hyaluronic acid as well as normalized the fluid pressure in tumors, allowing vessels to re-expand and thereby overcome a major barrier to drug delivery.

This treatment eliminated the immobile fluid phase and allowed vessels that had collapsed under pressure to re-expand. Preliminary results have shown that this treatment significantly improves response rates and progression-free survival in pancreatic cancer patients. 

Using an instrument called a piezoelectric pressure catheter transducer, the team captured both free- and immobile-fluid pressures in tumors. The measurements of fluid pressure using the new instrument were much higher. Moreover, elevated fluid pressures measured by the instrument correlated with high levels of hyaluronic acid in a variety of tumor models. 

“The findings show that the hyaluronic acid-dependent immobile fluid phase plays a previously underappreciated role in driving high pressures in solid tumors,” Hingorani added.

The researchers plan to further examine the mechanisms behind high immobile fluid pressures in solid tumors. 

“Similarly, elevated pressures due to a gel-fluid phase may be present in many other solid tumor types, so it may be worth seeing to what extent drug delivery can be improved in those settings as well,” Hingorani noted.

(0) comments

Welcome to the discussion.

Keep it Clean. Please avoid obscene, vulgar, lewd, racist or sexually-oriented language.
PLEASE TURN OFF YOUR CAPS LOCK.
Don't Threaten. Threats of harming another person will not be tolerated.
Be Truthful. Don't knowingly lie about anyone or anything.
Be Nice. No racism, sexism or any sort of -ism that is degrading to another person.
Be Proactive. Use the 'Report' link on each comment to let us know of abusive posts.
Share with Us. We'd love to hear eyewitness accounts, the history behind an article.