Anubhuti Goel

Indian American postdoctoral researcher Anubhuti Goel is part of a team at UCLA that is trying to identify early brain processes that will impact behavior in children when they are older. (UCLA.edu photo)

Researchers at UCLA, led by Indian American postdoctoral researcher Anubhuti Goel, using a genetic technique that allows certain neurons in the brain to be switched on or off, reversed a sensory impairment in mice with symptoms of autism, enabling them to learn a sensory task as quickly as healthy mice, according to a university report.

The findings, which appear in the journal Nature Neuroscience, offer an intriguing glimpse of a potential strategy to help people with autism make sense of what their eyes see, according to the university.

In humans, the ability to perceive visual information is critical to learning of all kinds, including the interpretation of social cues. In children with autism, avoiding eye contact and struggling to understand people’s feelings may be rooted in how their brains process visual information, it said.

“The focus in autism has been trying to tackle social impairment. But if there is a deficit in learning due to being unable to process certain kinds of sensory input, it affects your development,” said Goel, a postdoctoral researcher in neurology at UCLA and the study’s first author. “We’re trying to identify early brain processes that will impact behaviors in children when they are older.”

For this experiment, Goel and colleagues at UCLA used mice with a similar mutation in the FMR1 gene as humans with fragile X syndrome, a genetic condition that is the most commonly inherited cause of autism in humans, UCLA said.

Mice with the mutation share a number of autism symptoms with people with fragile X syndrome, including anxiety, reduced social interaction and an overreaction to sensory stimuli such as texture and sound, it added.

The researchers trained mice on a visual discrimination task, where the goal for the mice was to lick a drop of water in response to a specific visual cue on a screen, it said.

A pattern of parallel, black-and-white lines slanting a certain way signified the presence of a water drop; slanted a different way, there was no water drop. If the mice took too long to decide, the water drop disappeared — vacuumed up by the scientists, the report added.

By recording brain activity in the mice, researchers found that the visual cortex of the fragile X syndrome mice, or FXS mice, had fewer and less finely tuned neurons called pyramidal cells, it said.

These excitatory neurons found in rodents, monkeys and humans, are responsible for perceiving the orientation of visual information, it said. In addition, researchers found reduced activity in parvalbumin neurons, which are inhibitory neurons that work in concert with pyramidal cells, kicking them into gear and “tuning” them to respond to specific, or more general, bits of visual information, the report added.

The researchers targeted the parvalbumin cells with a genetic technique called DREADD, which stands for Designer Receptors Exclusively Activated by Designer Drugs. They injected the fragile X syndrome mice with a virus carrying the genes for these special designer receptors; once inside the mouse’s parvalbumin cells, the virus generates the DREADD receptors, according to the university.

Next, a drug administered intravenously reached those receptors and activated the parvalbumin cells, it said.

“These experiments shed light on the brain circuit problems behind those difficulties in autism, and hint at directions we can pursue for treatment in the future,” Goel said in the report.

Goel’s next step will be figuring out what happens in the visual discrimination task with sensory distractors, such as flashing lights or loud sounds, according to the university.

Many autistic children and adults are unable to tune out such distractors, which could contribute to poor performance in school and anxiety in social settings. Fragile X syndrome mice, too, have sensory over-reactivity, which could impede their learning, it said.

The study was supported by grants from the U.S. Department of Defense, the John Merck Fund, the National Institutes of Health, the Fragile X Alliance of Ohio and the Cincinnati Children’s Hospital Research Foundation, it said.

(0) comments

Welcome to the discussion.

Keep it Clean. Please avoid obscene, vulgar, lewd, racist or sexually-oriented language.
PLEASE TURN OFF YOUR CAPS LOCK.
Don't Threaten. Threats of harming another person will not be tolerated.
Be Truthful. Don't knowingly lie about anyone or anything.
Be Nice. No racism, sexism or any sort of -ism that is degrading to another person.
Be Proactive. Use the 'Report' link on each comment to let us know of abusive posts.
Share with Us. We'd love to hear eyewitness accounts, the history behind an article.